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Abs t rac t  

Starting from the principles of the local quantized ordinary fields in four dimensions the 
theory is constructed for the local quantized superfield. From the normal connection between 
between spin and statistics of ordinary fields the local commutativity (anticommutativity) 
for superfields is obtained. Also the CPT invariance of "Wightman's superfunction" and 
the general theorem on the connection between spin and statistics are proved. 

1. In f roduc t ion  

It is approximately one year since the time when supersymmetry emerged 
on the physical scene. New fields connected with the supersymmetry algebra, 
so called "superfields", were defined over the eight-dimensional "extended 
space-time" (Salam and Strathdee, 1974a) whose points are represented by 
the pair (xu, q~a), where x u are space-time coordinates and 0~ is an anticommuting 
c-number Majorana spinor. 

The supersymmetry transformation on this "extended space-time" is given 
by 

x u -+x u + ½i~7.0 

(1.1) 
0~ -+ 0~ +ee 

where e~ is an anticommuting Majorana spinor. The supersymmetry algebra 
A is the generalized Lie algebra over the field R of real numbers with "the 
physical basis" {Pu, Ju~,, S~) ~, u = 0, 1, 2, 3, ~ = 1,2, 3, 4, where the usual 
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commutation rules involving Pu and Juv must be supplemented by the rules 
involving S~: 

[S~, e , ]  =0  

[Sc~, Ju~ ] = ½(°uvS)c~ (1.2) 

= - 

The explanation for why Sc~ is a Majorana spinor follows from extension of 
the requirement of CPT invariance of commutation rules of generators of 
infinitesimal Poincar6 transformations to new rules involving Sa(HrubSr, 1974). 

For simplicity now we shall work with the real scalar superfield q~(x, 0), 
which can be given by a formal polynomial (for a detailed description see Salam 
and Strathdee, 1974a) in four anticommuting generators 0~: ~(x, 0) = ~ x )  + 

+ (x)O O  + (x)O O O  + t 08 O OeO  (1.3) 

where the coefficients are in general complex valued functions o fx  u and are 
exactly equivalent to a 16-component set of ordinary fields in four dimensions. 
Because we shall here assume a real scalar superfield 

~*(x, 0) = ~(x, 0) (I .4) 

we shall have Bose components that are real and Fermi components that are 
Majorana spinors. 

Because the ordinary fields in four dimensions are quantized, it is quite 
natural to raise the question: What is a quantized superfield? The answer to this 
question is given in section 2. In section 3 "Wightman's superfunctions" are 
defined and using CPT invariance of ordinary Wightman's functions the CPT 
invariance of "Wightman's superfunction" is shown. In section 4 we shall see 
that from the normal connection between spin and statistics of ordinary 
fields in four dimensions we obtain (a) local commutativity between spinor 
superfield and scalar superfield, (b) local anticommutativity between spinor 
superfields, and (c) local commutativity between scalar superfields. On the 
other hand, starting from the local quantized superfield, we shall prove the 
normal connection between spin and statistics tbr super fields. 

2. The Local Quantized Superfield 

(I) The quantized superfield will be the operator valued distribution 

~(f, O) = f (p(x, O)f(x)d4x (2.t) 

[where f E 5" (R 4)- the  space of analytic rapidly decreasing functions], 
which is acting on Z2-graded vector space H = H o O  H1 fulfilling the following 
conditions: 

(1) All operators ~ f ,  0) have an invariant common dense domain g2 for all 
feSe(R4) and the vacuum 10)egZ, where ¢(f, 0)g2 C g2. 



LOCAL QUANTIZED SUPERFIELD, CPT, SPIN AND STATISTICS 597 

(2) ~(&f+/3g, 0) = Ot~(f, 0) + j3q~(g, 0), a,/3 @ C. 
(3) ~(k 0) fulfin 

ff ~ a, ~2 E fZ, then (~1 l~(f, 0)~2 )e50 *(R4)-the space of linear continuous 
functionals on 5 ° (R4). 

(4) 
4 1 

/ _ . j !  1 
1=1 

4 1 j~[cq...o~j](x)f(x)d4xOo4.." 0% 

1"=1 

(2.2) 

This definition of the quantized superfield is more convenient than that of 
KoteckS, (1974), where 0o~ are also quantized, because the testing functions 
have a good physical meaning only in physical space R 4 and not in "extended 
space-time." Therefore it is physically impossible to define superfunctions as 
testing functions. 

The problem of constructing unitary representations of supersymmetry 
algebra is solved by Salam and Strathdee (1974b). Then the condition of 
locally covariant superfield can be formulated as follows: 

(II) Let U(.q, A) be a unitary representation of ~o -= ~t+ in H. 
Then we shall define the locally covariant superfield: 

U(a,. A )()(f, O )U -1 ~ ,A)  = ~(f{a, A}, V(A )O) 

(2.3) 
4 

= V(A)O , 

]=1 

Also the requirement of local commutativity can be generalized naturally: 
(III) Let for the supports fl and f2 

supp fl(x) " f2(Y) C {(x - y)2 < O) 

be fulfilled; then for operators ~(fl, 0), q~(f2, O) 

D(fl, 0), ~(f2, o)1 = o (2.4) 

holds. 
Similarly the requirement of completeness of the theory for normal 

quantized field can be generalized: 
(IV) Vacuum 10) is a cyclic vector under algebra U~- {all polynomials 

PD(f ,  0)1 }. 
So we can see that axioms (I)-(IV) are generalization of axioms required in 

normal local theory for superfields. 
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3. The "Wightman's Superfunctions" and the CPT Invarianee 

We can define "Wightman's superfunction" for real scalar superfields as 
vacuum expectation value of product n superfields: 

w~, (x~, o)~(x~,  0). • • ~n(xn0) =(o1~1(xl,  0)~2(X2, 0 ) - ' '  ~n(X., 0)10) (3.1) 

This "Wightman superfunction" has its specific characteristic: 
(1) The product of n superfields is again a superficial and therefore can be 

expanded in Taylor's expansion in 0~, which is finished for n = 4 because the 
condition is fulfilled that the product 

vanish for n > 4. 
(2) Because the vacuum expectation value of odd-numbered spinor fields is 

equat to zero, all members of (3. I) with odd-numbered anticommuting Majorana 
spinor fields are equal to zero. 

Now we shall do it more precisely. We shall use the expansion (1.3) in the 
form (Salam and Strathdee, 1974c) 

~(x, O) = A(x)  

+ 04J(x) 

+ ¼0OF(x) + ¼07sOG(x) + ¼0i%TsOAv(X) (3.2) 

+ ¼ ooo×(x) 

+ ~ (O0)2D(x) 

where the coefficients A, F, G, Av, and D are Bose fields and ~, × are Fermi 
fields. We start with 

W~ (x,, o)~, o) ~ <0l~l, 0~  (2, 0) 10> 
= (0 [A(1)A(2)I0) 

+ ¼00 (0 [,4(1)F(2) - ~(1)~(2) + F(1)A(2) 10> 

+ ¼07s0 (0 tA(1)G(2) + ~(1)~s 6,(2 ) + G(I)A(2)I0)  (3.3) 

+ ¼0i7v7 s 0 (0 IA (1) Av(2) + ~(1)i%7s ~(2) + Av(1) A(2) 10) 

+ ¼(00) 2 (0 tA(1)D(2) + 2 [F(1)F(2) + G(1)G(2) + Av(1)Av(2)] 

+ D(1)A(2) - 2[~(1)X(2) + 2(1)$(2)1 10) 

So we can generalize for n superfields: 

WO, (x~, o) . . .  ,n(Xn, o) = (0 I A(1)A(2) • • "A(n) t0) 
1 fin iDscalar (II) 

+ ~ t J v  e e l , . . . ,  n 

+ 1 ~ ,  ta ~7 pseudoscatar (II) (3.4) 
4 t ~ t 5 ~  rv 1, . . . ,  n 

+ ¼0/,),v,),$ 0 ~ ,x ia! ,  vector ( I I )  

+ I( /~A'~21~ scalar (IV) 
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The symbols W are as follows: 

(a) WlS, c.a)a r(II) : the vacuum expectation value from the linear combination 
of all products of n coefficients of expansion (3.2) with no more than t w o  
Majorana spinors 0~ and with the whole linear combination transforming as a 
scalar [for example ~c,~lar (II) = (0 [A(1)F(2) - ~(1)~(2) + F(1)A(2) [0)]. 
~seudoscalar (II)(~ axial-vector (II)) means the same, only the whole linear 
combination transforms as a pseudoscalar (atrial vector). For example 

~pseudoscala, (11) = < 0 1 A 0 ) a ( 2 )  + ~(1)Ts ~(2)  + G ( 1 ) A ( 2 )  10> 
1,2 

axial vector (m = <01A(1)A.(2) + ~'O)i~'~'/s ~(2) + A~0)A(2)  10> 
1,2 

(b) W?,calaT(IV): the vacuum expectation value from the linear combination 
of all products of n coefficients of expansion (3.2) with no more than f o u r  
Majorana spinors 0a and with the whole linear combination transforming 
as a scalar. For example 

~seatar (IV)_ ( 0  [A(1)D(2) + 2 [F(1)F(2) + G(1)G(2) + A~(1)A~(2)] 1,2 

+ D(1)A(2) - 2 [~(1)X(2) + 2(1)~(2)1 [0) 

Now we shall see how from relations (3.4) we can show CPT invariance for 
Wightman's theory of scalar superfields. It is well known that if we assume 
relativistic invariance and locality of ordinary fields we can prove CPT 
invariance of normal Wightman's field theory, where for CPT transformation 
we can write (for scalar fields) 

(o I~o~ (Xl)~0=(x=) . . .  ~0~(x~)Io> = (o I~on(--Xn) " • " ~o=(--X~)~(--X~)10) 

With our symbolic it can be expressed as 

~scalar  (II) = ~scalar  (It) 
1 , . . . ,  n ' " - n ~ . . . ,  - 1  

~-]pseudoscalar (II) = W pseudoscalar (I1) 
" - n ,  . . . - 1  

r r l r .  . . ~  I q  
(3.s) 

axial vector (II) - _ ~ axial vector (If) 
1 , . . . ,  n - " " - n , . . . ,  - 1 

scalar (IV) = ~scalar  (IV) 
I , . . . , n  - - n , . . . , - - 1  

We consider the following identities for bilinears 000: 

(000)OPT = e(O)O00 

where 

0 - {~, 7 s, i7~7 s ) 

e ( o ) -  (1, 1 , - 1 )  

For "Wightman's superfunction" the CPT transformation is 

CPT W¢, (x~, o ) . . .  ¢n(Xn' 0)(CPT) -I = i ~ n ( _ X  n,OCpT) . . " ~1 ( - x l  , Oc~r) (3.6) 
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If we use in (3.6) relation (3.4) we get 

W~n(-xn, Ocr, r )""  4)~ (-x~, 0cer) = (0 IA(--n)" • • A( -1) t0 )  

+¼00 g/scal~r (m 
- n , . . . ,  -1 

th^,  t~ff~pseudoscalar (II) (3.7) 
4tt l$ u W--n , . . . ,  -1 

_ ¼0i3,v,YsO~_a~ia.l.ve~tor (II) 

+ 1~ (00 )2  ~ scalar (IV) 
-n , . . . ,  --1 

If we put (3.5) into (3.7) we obtain 

W 4an(-X n ' 0Ct r f ) . . .  ¢~ ( - x ,  , OcYr ) = W~1 (x~ , 0 ) . ' .  ~ (Xn ,  O) 

So we proved from CPT invariance of Wightman's field theory in R 4 the CPT 
invariance of "Wightman's superfunctions." 

4. Superfields and the Connection between Spin and Statistics 

Our aim is to shed some light on the further basic result of normal axiomatic 
field theory- the connection between spin and statistics, now for the case 
of local quantized superfields. 

We shall say that the system of superfields fulfils the normal connection 
between spin and statistics if the tensor superfields, transforming under one- 
valued representation of the proper Lorentz group L~+, locally commute and 
the spinor super fields, transforming under two-valued representation of the 
L t locally anticommute. +7 

At first we shall recall the axiom of locality for ordinary fields in four 
dimensions ~k (with components ~ka), which can be formulated 

~ ( x ) ~ f O , )  = okx~x~O')~k"(x), (x - y)2 < 0 

where okz = -+ 1 and is independent of a and/3. We note that the supersymmetry 
transformation induces no Lorentz transformation and we obtain a tensor or 
spinor superfield by appending a Lorentz index. For simplicity we shall restrict 
ourselves only to the scalar and the spinor superfield, where for the spinor 
superfield we can write [in anology to (1.3)] 

~,(x, o) = ~,(x ) + ~ (x )o~ + ½ ~ 1  o eo ~ + ~ ~ , ~ 1  (x )o~o~o~ + :~ ~,~e~ l o ~o~o~o~ 

(4.1) 

We know that from the connection between spin and statistics of ordinary 
fields in four dimensions we have 

(a) local commutativity between the spinor field and the boson field 
(b) local anticommutativity between spinor fields (4.2) 
(c) local commutativity between boson fields 
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Using conditions (4.2) we can show that we obtain local commutativity for 
scalar superfields: 

[¢(f~, 0), ~b(f2, 0)] = 0, supp f~ (x) .  f2(Y) c ((x - y)2 < 0} 

For this purpose we use expansion (2.2): 

4 1 
[¢(f~, 0), ~(f~, 0)1 = ~ .  

k! /, ~=1 

x [ ~ , ~ ( ] i ) % - - . ¢ ~ , ~  ~,'~k~(5)%...0~,] (4.3) 
If we use the condition that the product Oa~ Oa~ " " • Oc~ n vanishes for n > 4, 
we get from (4.3) only the following types of commutators between ordinary 
fields in four dimensions: 

(i) [(}(fx), ¢(f2)] = 0 from (c) 

[~fh(fx)Oaa,~P~(f2)03,] = -  {Oqq(fl),¢f~(f2)}OoqO & =0 from(b) 

[~[a,%l (fl)0% Ocq, ~)[3"hl(f~)O3~.O& ] = 0 from (c) 

(ii) [~)(fl),~'(f2)O~, ] = 0 from (a) 

[~(A), ~I~' ~l(f2)o~o~,] = o 

[~(f~), ~I~,~¢~1(f2)0¢ 0¢~0¢, ] = 0 

[~(f~), ~t~,~,J(f2)o~ o~ o~ o~,] = o 
(~i) [ ~ ,  (f1)%, ~ [ ~ , ~ ( f ~ ) 0 ~ , ]  = 0 
[ ~ ( f i ) o ~ , ,  ~[~, ~l(f~)o~ % o~,] = o 

from (c) 

from (a) 

from (c) 

from (a) 

from (b) 

It is remarkable that the local commutativity for scalar superfields is independent 
of commutativity or anticommutativity between 0~ and the Fermi fields. 

A different situation arises for spinor superfields, because the anticommutativity 
between 0~ and the Fermi fields must hold strictly as we shall see below. 
For anticommutators between spinor superfields we obtain 

4 
l 

{~a'(fl 'O)'@(f2'O)}+ = ]!k!  
],k=l 

x ~c~t~,~,... ~J~(s'l)%... o~,, ~ y ,  ~k~ o~k.., o~, 

and analogously we get only following types of anticommutators between 
ordinary fields: 

(J) (~ce(f,), ~'(]3)} = 0 from (b) 

{ ~ ,  (fl)0%, ~S,( f2)0¢ ' ) = [~,~1 (fl),  ~-S'(f2)] 0~0~1 = 0 from (c) 

(~[a,%c%l(fl)O%Ooq, ~fi~ ;~21(f2)0~0 & } = 0 from (b) 

(JJ) {~a'(fl), t}J,  (f2)O& } = [ ~ ( f l ) ,  ~ ' ~  (f2)] O& = 0 from (a) 
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If we use commutativity between 0~ and the Fermi field as we can make 
it in the case of scalar superfields, we obtain an anomalous connection 
between spin and statistics for ordinary fields: 

(~a(fl), ~y'~l(f2)O#20~ } = 0 from (b) 

(~a(fl), ~'~ ~'l(f2)O[~,O~,Og, } = 0 from (a) 

(~c;(fl), ~y'gz~'](f2)O#,O#30~O & } = 0 from (b) 

(jjj) (~,a~ (fl)0% ' ~!~](f2)OgO & } = 0 from (a) 

{~c/°q (fl)O~ , ~/}fl~#3l(f2)O~30# O# } = O from(c) 

Also for the commutator between the scalar and the spinor superfield we 
obtain in the same way 

[(p(fl, 0), t~c/(f2, 0)] =0, suppf l (x) ' f2(y)C { ( x - y ) 2  < O) 

Concluding: from the normal connection between spin and statistics of 
ordinary fields in four dimensions, we get 

[¢(fi, 0), ~,(f~, 0)] = 0 

(~a,(fl, 0), @(f2,0)} 0 i suppf~(x) "f2(Y) C {(x _ y ) 2  < O} 

[~(A, 0),~(f2, 0)] 0 

That means that the superfields fulfill the normal connection between spin 
and statistics. 

Now we shall prove the general theorem on the connection between spin 
and statistics for local quantized superfields, using "Wightman's superfunction.' 
First we shall state some basic assumptions. We use the notation D(j/2, k/2) 
for irreducible representation (IR) of the group SL (2, C), where j and k are 
non-negative integers. If the superfield ~(x, O) transforms under the representa- 
tionD(]/2, k/2), then ~*(x, 0) transforms under the adjoint representation 
D(k/2, ]/2). We know that "Wightman's superfunction" is the sum of ordinary 
Wightman's functions, and so we can formally write in symbolic form 

W~(:q,o)e~(x~,O) = (01~(1)~(2)10) + wlte~ s°r (II)o~Oa + WI7~ s°r (IV)ooO~O60a 

(4.4) 

O} + ~spinor (II) o(30 a + ~j)spinor (IV) ooo, yo~oa g~,~,(x,,o)%y(x~,o)=(OI~c~'(1)~'(2) ~,2 ,,1,2 

where only members with even numbers of ordinary spinor fields do not vanish 
in vacuum expectation value. 

It is remarkable that the vacuum expectation value of odd-numbered spinor 
superfields is not evidently zero. The reason for that is that supersymmetry is 
Fermi-Bose symmetry mixing scalar with spinor fields and so we obtain for 
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example, in the product of three spinor superfietds, the member 
~a'(X1)~ fl' (X2)~7'(x3)O~t and the vacuum expectation value (01 t}~,(xl)~J~ (x2) 
~'(x3)l 0):g O. 

Because the relations (4.4) are valid, we can transfer all characteristics from 
normal Wightman's theory to theory of "Wightman's superfunctions" as well 
as the Bargman-Hall-Wightman theorem which we need for our proof (Streater 
and Wightman, 1964). We need also the following lemma: 

Lemma. If ~(x, 0)10) = 0, where ~b(x, 0) is a local superfield, then 
~(x, O) -- 0. This is fulfilled for ordinary fields, and because the 
general superfield is exactly equivalent to a set of ordinary fields, 
this lemma holds also for superfields. 

Now we can formulate the theorem on the connection between spin and 
statistics for superfields: 

Theorem. Let O(x, O) be a complex superfield, which transforms 
under arbitrary (IR) Dff/2, k/2) of the group SL (2, C). If 

~(x,O)C&*(y, 0) = - ( -  l j  + k~* (y ,  O)~ke(x, O) (4.5) 

holds for (x - y)2 = ~2 < 0, then ~ ( x )  = 0. 

Proof. Because we work only with one component a, we shall omit index 
c~. We designate "Wightman's superfunction" as 

f l ( x  - y ,  0) = (0t $(x, 0)$*(y, 0)[0) 
and 

F~(x - y ,  0) : <01 ~*(x, 0)~0,, 0)10> 

From (4.5) we get for ~2 < 0 

FI(~, 0) + ( -  1)/+ kF2(-~, 0) : 0 (4.6) 

where ~ = (x - y) C R4.We can do an analytic continuation of the equation 
(4.6) to an extended tube T', where T' - {UAT ± I l e t  ± = R4 + iV±, L+(C)-  

AeL+(C) 
the group of complex proper Lorentz transformation}. Because the "Wightman's 
superfunction'" is the sum of covariant Wightman's functions under L+(C), it is 
evidently also covariant under L+(C), especially under transformation of the 
space-time discrete symmetry. In this case the following relation is fulfilled: 

F2(-~, 0) = ( -  1) j + kF~([, O) (4.7) 

If we put (4.7) into (4.6) we get 

6 ( L  0) + F2(~, 0)= 0 

and in the limit case V_ ~ Imf  -~-  0 we obtain for real x and y 

(01 ¢(x, 0)¢*(y, 0) 10) + (01 ¢*(x, 0)~(y, 0) 10) = 0 (4.8) 
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After multiplying equation (4.8) by testing functions,  we have 

II ~*(f ,  0)t0>112 + li ~ ( f ,  0)10>ti 2 = 0 

and from the lemma we obtain if(x, 0) - 0. 
So we have proved that anomalous commutat ion or anticommutation rules 

for superfietds are forbidden. 1 
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